The rice HIGH‐TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds
Open Access
- 8 November 2006
- journal article
- Published by Wiley in The Plant Journal
- Vol. 48 (5) , 687-698
- https://doi.org/10.1111/j.1365-313x.2006.02916.x
Abstract
Summary: Rice tillering is an important agronomic trait for grain production. The HIGH‐TILLERING DWARF1 (HTD1) gene encodes an ortholog of Arabidopsis MAX3. Complementation analyses for HTD1 confirm that the defect in HTD1 is responsible for both high‐tillering and dwarf phenotypes in the htd1 mutant. The rescue of the Arabidopsis max3 mutant phenotype by the introduction of Pro35S:HTD1 indicates HTD1 is a carotenoid cleavage dioxygenase that has the same function as MAX3 in synthesis of a carotenoid‐derived signal molecule. The HTD1 gene is expressed in both shoot and root tissues. By evaluating ProHTD1:GUS expression, we found that the HTD1 gene is mainly expressed in vascular bundle tissues throughout the plant. Auxin induction of HTD1 expression suggests that auxin may regulate rice tillering partly through upregulation of HTD1 gene transcription. Restoration of dwarf phenotype after the removal of axillary buds indicates that the dwarfism of the htd1 mutant may be a consequence of excessive tiller production. In addition, the expression of HTD1, D3 and OsCCD8a in the htd1 and d3 mutants suggests a feedback mechanism may exist for the synthesis and perception of the carotenoid‐derived signal in rice. Characterization of MAX genes in Arabidopsis, and identification of their orthologs in pea, petunia and rice indicates the existence of a conserved mechanism for shoot‐branching regulation in both monocots and dicots.Keywords
This publication has 64 references indexed in Scilit:
- Axillary bud outgrowth: sending a messageCurrent Opinion in Plant Biology, 2006
- SHOOT BRANCHINGAnnual Review of Plant Biology, 2005
- The Branching Gene RAMOSUS1 Mediates Interactions among Two Novel Signals and Auxin in PeaPlant Cell, 2005
- Regulation of shoot branching by auxinPublished by Elsevier ,2003
- Control of Outgrowth and Dormancy in Axillary BudsPlant Physiology, 2001
- Mutational Analysis of Branching in Pea. Evidence ThatRms1 and Rms5 Regulate the Same Novel SignalPlant Physiology, 2001
- Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T‐DNAThe Plant Journal, 1994
- Apical dominanceThe Botanical Review, 1991
- Requirement of the Auxin Polar Transport System in Early Stages of Arabidopsis Floral Bud FormationPlant Cell, 1991
- Inactivation of auxin in tobacco transformed with the indoleacetic acid-lysine synthetase gene of Pseudomonas savastanoi.Genes & Development, 1991