Abstract
Excitation transfer between the 62P fine-structure substates in rubidium, induced in inelastic collisions with ground-state molecules, has been studied using techniques of sensitized fluorescence. Rubidium vapor in mixtures with various molecular gases was irradiated with each component of the 2P rubidium doublet in turn, and measurements of sensitized-to-resonance fluorescent intensity ratios yielded the following mixing cross sections Q12(2P1/22P3/2) and Q21(2P1/22P3/2), as well as effective quenching cross sections Q1X(2P1/22XJ) and Q2X(2P3/22XJ). For collisions with H2: Q12(2P1/22P3/2) = (41 ± 5) Å2; Q21(2P1/22P3/2) = (26 ± 3) Å2; Q1X(2P1/22XJ) = (36 ± 9) Å2; Q2X(2P3/22XJ) = (31 ± 8) Å2. For HD: Q12 = (42 ± 5) Å2; Q21 = (27 ± 4) Å2; Q1X = (47 ± 13) Å2; Q2X = (38 ± 10) Å2. For D2: Q12 = (42 ± 5) Å2; Q21 = (27 ± 4) Å2; Q1X = (28 ± 8) Å2; Q2X = (21 ± 7) Å2. For N2: Q12 = (107 ± 15) Å2; Q21 = (70 ± 10) Å2; Q1X = (128 ± 44) Å2; Q2X = (126 ± 33) Å2. For CH4: Q12 = (38 ± 6) Å2; Q21 = (24 ± 3) Å2; Q1X = (129 ± 41) Å2; Q2X = (114 ± 37) Å2. For CD4: Q12 = (52 ± 7) Å2; Q21 = (34 ± 5) Å2; Q1X = (82 ± 30) Å2; Q2X = (76 ± 22) Å2. An analysis of these results suggests the possibility of resonances with various molecular rotational and vibrational transitions.

This publication has 0 references indexed in Scilit: