Heat and Energy Balances in the Upper Ocean at 50°N, 140°W during November 1980 (STREX)

Abstract
Subsurface temperature data and surface meteorological data are analyzed from thermistor chain moorings deployed near 50°N, 140°W during the Storm Transfer and Response Experiment (STREX). The upper-ocean heat and potential energy (PE) contents to 90 m are examined for an 18-day period and their changes compared to the sources and sinks of heat and turbulent kinetic energy (TKE). Heat and TKE do not balance in the vertical dimension alone. The heat content change, for example, averages −200 W m−2 while the net cooling at the surface, estimated from bulk formulas for latent and sensible heat fluxes and radiation measurements, averaged only −86 W m−2. Advection of heat and PE, in either the vertical or horizontal, play major roles in the budgets of this area. We describe a method for using the large-scale wind stress and SST data around the site to compute the advection in the Ekman layer and close the heat (to 23%) and TKE (to 24%) budgets. Though the heat and PE contents exhibit long-term trends,... Abstract Subsurface temperature data and surface meteorological data are analyzed from thermistor chain moorings deployed near 50°N, 140°W during the Storm Transfer and Response Experiment (STREX). The upper-ocean heat and potential energy (PE) contents to 90 m are examined for an 18-day period and their changes compared to the sources and sinks of heat and turbulent kinetic energy (TKE). Heat and TKE do not balance in the vertical dimension alone. The heat content change, for example, averages −200 W m−2 while the net cooling at the surface, estimated from bulk formulas for latent and sensible heat fluxes and radiation measurements, averaged only −86 W m−2. Advection of heat and PE, in either the vertical or horizontal, play major roles in the budgets of this area. We describe a method for using the large-scale wind stress and SST data around the site to compute the advection in the Ekman layer and close the heat (to 23%) and TKE (to 24%) budgets. Though the heat and PE contents exhibit long-term trends,...

This publication has 0 references indexed in Scilit: