Inactivation of BK Channels by the NH2 Terminus of the β2 Auxiliary Subunit: An Essential Role of a Terminal Peptide Segment of Three Hydrophobic Residues
Open Access
- 1 February 2003
- journal article
- Published by Rockefeller University Press in The Journal of general physiology
- Vol. 121 (2) , 125-148
- https://doi.org/10.1085/jgp.20028667
Abstract
An auxiliary β2 subunit, when coexpressed with Slo α subunits, produces inactivation of the resulting large-conductance, Ca2+ and voltage-dependent K+ (BK-type) channels. Inactivation is mediated by the cytosolic NH2 terminus of the β2 subunit. To understand the structural requirements for inactivation, we have done a mutational analysis of the role of the NH2 terminus in the inactivation process. The β2 NH2 terminus contains 46 residues thought to be cytosolic to the first transmembrane segment (TM1). Here, we address two issues. First, we define the key segment of residues that mediates inactivation. Second, we examine the role of the linker between the inactivation segment and TM1. The results show that the critical determinant for inactivation is an initial segment of three amino acids (residues 2–4: FIW) after the initiation methionine. Deletions that scan positions from residue 5 through residue 36 alter inactivation, but do not abolish it. In contrast, deletion of FIW or combinations of point mutations within the FIW triplet abolish inactivation. Mutational analysis of the three initial residues argues that inactivation does not result from a well-defined structure formed by this epitope. Inactivation may be better explained by linear entry of the NH2-terminal peptide segment into the permeation pathway with residue hydrophobicity and size influencing the onset and recovery from inactivation. Examination of the ability of artificial, polymeric linkers to support inactivation suggests that a variety of amino acid sequences can serve as adequate linkers as long as they contain a minimum of 12 residues between the first transmembrane segment and the FIW triplet. Thus, neither a specific distribution of charge on the linker nor a specific structure in the linker is required to support the inactivation process.Keywords
This publication has 49 references indexed in Scilit:
- The open pore conformation of potassium channelsNature, 2002
- NMR Structure of the “Ball-and-chain” Domain of KCNMB2, the β2-Subunit of Large Conductance Ca2+- and Voltage-activated Potassium ChannelsJournal of Biological Chemistry, 2001
- Allosteric Regulation of Bk Channel Gating by Ca2+ and Mg2+ through a Nonselective, Low Affinity Divalent Cation SiteThe Journal of general physiology, 2001
- Gating Properties Conferred on Bk Channels by the β3b Auxiliary Subunit in the Absence of Its Nh2- and Cooh TerminiThe Journal of general physiology, 2001
- Cloning and Functional Expression of Two Families of β-Subunits of the Large Conductance Calcium-activated K+ ChannelPublished by Elsevier ,2000
- Molecular basis of fast inactivation in voltage and Ca 2+ -activated K + channels: A transmembrane β-subunit homologProceedings of the National Academy of Sciences, 1999
- Potassium channel inactivation peptide blocks cyclic nucleotide-gated channels by binding to the conserved pore domainNeuron, 1994
- Trypsin-Sensitive, Rapid Inactivation of a Calcium-Activated Potassium ChannelScience, 1992
- Internal blockade of a Ca2+-activated K+ channel by shaker B inactivating “ball” peptideNeuron, 1992
- A peptide derived from the shaker B K+ channel produces short and long blocks of reconstituted Ca2+-dependent K+ channelsNeuron, 1992