SVD Approach to Data Unfolding
Preprint
- 19 September 1995
Abstract
Distributions measured in high energy physics experiments are usually distorted and/or transformed by various detector effects. A regularization method for unfolding these distributions is re-formulated in terms of the Singular Value Decomposition (SVD) of the response matrix. A relatively simple, yet quite efficient unfolding procedure is explained in detail. The concise linear algorithm results in a straightforward implementation with full error propagation, including the complete covariance matrix and its inverse. Several improvements upon widely used procedures are proposed, and recommendations are given how to simplify the task by the proper choice of the matrix. Ways of determining the optimal value of the regularization parameter are suggested and discussed, and several examples illustrating the use of the method are presented.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: