Modulation of the firing activity of noradrenergic neurones in the rat locus coeruleus by the 5‐hydroxtryptamine system
- 3 February 1997
- journal article
- Published by Wiley in British Journal of Pharmacology
- Vol. 120 (5) , 865-875
- https://doi.org/10.1038/sj.bjp.0700968
Abstract
1. The aim of the present study was to investigate the putative modulation of locus coeruleus (LC) noradrenergic (NA) neurones by the 5-hydroxytryptaminergic (5-HT) system by use of in vivo extracellular unitary recordings and microiontophoresis in anaesthetized rats. To this end, the potent and selective 5-HT1A receptor antagonist WAY 100635 (N-[2-[4(2-methoxyphenyl)-1-piperazinyl]-N-(2-pyridinyl) cyclohexanecarboxamide trihydroxychloride) was used. 2. In the dorsal hippocampus, both local (by microiontophoresis, 20 nA) and systemic (100 micrograms kg-1, i.v.) administration of WAY 100635 antagonized the suppressant effect of microiontophorectically-applied 5-HT on the firing activity of CA3 pyramidal neurones, indicating its antagonistic effect on postsynaptic 5-HT1A receptors. 3. WAY 100635 and 5-HT failed to modify the spontaneous firing activity of LC NA neurones when applied by microiontophoresis. However, the intravenous injection of WAY 100635 (100 micrograms kg-1) readily suppressed the spontaneous firing activity of LC NA neurones. 4. The lesion of 5-HT neurones with the neurotoxin 5,7-dihydroxytryptamine increased the spontaneous firing activity of LC NA neurones and abolished the suppressant effect of WAY 100635 on the firing activity of LC NA neurones. 5. In order to determine the nature of the 5-HT receptor subtypes mediating the suppressant effect of WAY 100635 on NA neurone firing activity, several 5-HT receptor antagonists were used. The selective 5-HT3 receptor antagonist BRL 46470A (10 and 100 micrograms kg-1, i.v.), the 5-HT1D receptor antagonist GR 127935 (100 micrograms kg-1, i.v.) and the 5-HT1A/1B receptor antagonist (-)-pindolol (15 mg kg-1, i.p.) did not prevent the suppressant effect of WAY 100635 on the firing activity of LC NA neurones. However, the suppressant effect of WAY 100635 was prevented by the non-selective 5-HT receptor antagonists spiperone (1 mg kg-1, i.v.) and metergoline (1 mg kg-1, i.v.), by the 5-HT2 receptor antagonist ritanserin (500 micrograms kg-1, i.v.). It was also prevented by the 5-HT1A receptor/alpha 1D-adrenoceptor antagonist BMY 7378 (1 mg kg-1, i.v.) and by the alpha 1-adrenoceptor antagonist prazosin (100 micrograms kg-1, i.v.). 6. These data support the notion that the 5-HT system tonically modulates NA neurotransmission since the lesion of 5-HT neurones enhanced the LC NA neurones firing activity and the suppressant effect of WAY 100635 on the firing activity of NA neurones was abolished by this lesion. However, the location of the 5-HT1A receptors involved in this complex circuitry remains to be elucidated. It is concluded that the suppressant effect of WAY 100635 on the firing activity of LC NA neurones is due to an enhancement of the function of 5-HT neurones via a presynaptic 5-HT1A receptor. In contrast, the postsynaptic 5-HT receptor mediating this effect of WAY 100635 on NA neurones appears to be of the 5-HT2A subtype.Keywords
This publication has 61 references indexed in Scilit:
- The selective 5-HT1A antagonist radioligand [3H]WAY 100635 labels both G-protein-coupled and free 5-HT1A receptors in rat brain membranesPublished by Elsevier ,2003
- Flesinoxan Dose‐Dependently Reduces Extracellular 5‐Hydroxytryptamine (5‐HT) in Rat Median Raphe and Dorsal Hippocampus Through Activation of 5‐HT1A ReceptorsJournal of Neurochemistry, 1996
- 5-Hydroxytryptamine-interacting drugs in animal models of anxiety disorders: More than 30 years of researchPharmacology & Therapeutics, 1995
- BRL 46470 potently antagonizes neural responses activated by 5-HT3 receptorsNeuropharmacology, 1993
- Citalopram and 8-OH-DPAT attenuate nicotine-induced excitation of central noradrenaline neuronsJournal Of Neural Transmission-Parkinsons Disease and Dementia Section, 1992
- Serotonin-norepinephrine interactions: a voltammetric study on the effect of serotonin receptor stimulation followed in the N. raphe dorsalis and the Locus coeruleus of the ratJournal Of Neural Transmission-Parkinsons Disease and Dementia Section, 1992
- Electrophysiology of the Central Serotonin System: Receptor Subtypes and Transducer MechanismsaAnnals of the New York Academy of Sciences, 1990
- In vivo regulation of the serotonin-2 receptor in rat brainLife Sciences, 1986
- The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the ratJournal of Comparative Neurology, 1985
- Afferent projections to the rat locus coeruleus as determined by a retrograde tracing techniqueJournal of Comparative Neurology, 1978