An annotation language for optimizing software libraries

Abstract
This paper introduces an annotation language and a compiler that together can customize a library implementation for specific application needs. Our approach is distinguished by its ability to exploit high level, domain-specific information in the customization process. In particular, the annotations provide semantic information that enables our compiler to analyze and optimize library operations as if they were primitives of a domain-specific language. Thus, our approach yields many of the performance benefits of domain-specific languages, without the effort of developing a new compiler for each domain. This paper presents the annotation language, describes its role in optimization, and illustrates the benefits of the overall approach. Using a partially implemented compiler, we show how our system can significantly improve the performance of two applications written using the PLAPACK parallel linear algebra library.

This publication has 14 references indexed in Scilit: