Abstract
A Galerkin-Petrov method for the approximate solution of the complete singular integral equation with Cauchy kernel, based upon the use of two sets of orthogonal polynomials, is considered. The principal result of this paper proves convergence of the approximate solutions to the exact solution making use of a convergence theorem previously given by the author. In conclusion, some related topics such as a first iterate of the approximate solution and a discretized Galerkin-Petrov method are considered. The paper extends to a much more general equation many results obtained by other authors in particular cases.

This publication has 2 references indexed in Scilit: