Multiple clustered layer solutions for semilinear Neumann problems on a ball
- 1 April 2005
- journal article
- Published by European Mathematical Society - EMS - Publishing House GmbH in Annales de l'Institut Henri Poincaré C, Analyse non linéaire
- Vol. 22 (2) , 143-163
- https://doi.org/10.1016/j.anihpc.2004.05.003
Abstract
We consider the following singularly perturbed Neumann problem \begin{cases} ɛ^{2}\mathrm{\Delta }u−u + f(u) = 0\:& \text{in}\:\Omega \text{;} \\ u > 0\:\text{in}\:\Omega \:\text{and}\:\frac{\partial u}{\partial \nu } = 0\:& \text{on}\:\partial \Omega \text{,} \end{cases} where \Omega = B_{1}(0) is the unit ball in \mathbb{R}^{n} , ɛ > 0 is a small parameter and f is superlinear. It is known that this problem has multiple solutions (spikes) concentrating at some points of \bar \Omega . In this paper, we prove the existence of radial solutions which concentrate at N spheres \bigcup _{j = 1}^{N}\{|x| = r_{j}^{ɛ}\} , where 1 > r_{1}^{ɛ} > r_{2}^{ɛ} > ⋯ > r_{N}^{ɛ} are such that 1−r_{1}^{ɛ} \sim ɛ\mathrm{\log }\frac{1}{ɛ}\text{,}r_{j−1}^{ɛ}−r_{j}^{ɛ} \sim ɛ\mathrm{\log }\frac{1}{ɛ}\text{,}\:j = 2\text{,}…\text{,}N . Résumé: On considère le problème de Neumann singulièrement perturbé suivant \begin{cases} ɛ^{2}\mathrm{\Delta }u−u + f(u) = 0\:&\text{dans}\:\Omega \text{;} \\ u > 0\:\text{dans}\:\Omega \:\text{et}\:\frac{\partial u}{\partial \nu } = 0\:&\text{sur}\:\partial \Omega \text{,} \end{cases} où \Omega = B_{1}(0) est la boule unité de \mathbb{R}^{n} , ɛ > 0 est un paramètre petit et f est surlinéaire. Il est bien connu que ce problème possède plusieurs solutions se concentrant en certains points de \bar \Omega . Dans cet article nous prouvons l'existence de solutions radiales qui se concentrent en N sphères \bigcup _{j = 1}^{N}\{|x| = r_{j}^{ɛ}\} , où 1 > r_{1}^{ɛ} > r_{2}^{ɛ} > ⋯ > r_{N}^{ɛ} sont tels que 1−r_{1}^{ɛ} \sim ɛ\mathrm{\log }\frac{1}{ɛ}\text{,}r_{j−1}^{ɛ}−r_{j}^{ɛ} \sim ɛ\mathrm{\log }\frac{1}{ɛ}\text{,}\:j = 2\text{,}…\text{,}N .This publication has 31 references indexed in Scilit:
- Multi-peak solutions for some singular perturbation problemsCalculus of Variations and Partial Differential Equations, 2000
- Equilibria with Many Nuclei for the Cahn–Hilliard EquationJournal of Differential Equations, 2000
- On the Role of Mean Curvature in Some Singularly Perturbed Neumann ProblemsSIAM Journal on Mathematical Analysis, 1999
- On the location and profile of spike-layer solutions to a singularly perturbed semilinear Dirichlet problem: Intermediate solutionsDuke Mathematical Journal, 1998
- On a singularly perturbed equation with neumann boundary conditionCommunications in Partial Differential Equations, 1998
- On the Boundary Spike Layer Solutions to a Singularly Perturbed Neumann ProblemJournal of Differential Equations, 1997
- On the Construction of Single-Peaked Solutions to a Singularly Perturbed Semilinear Dirichlet ProblemJournal of Differential Equations, 1996
- On the shape of least‐energy solutions to a semilinear Neumann problemCommunications on Pure and Applied Mathematics, 1991
- Uniqueness of the ground state solutions of △u+f(u)=0 in Rn, n≥3Communications in Partial Differential Equations, 1991
- Large amplitude stationary solutions to a chemotaxis systemJournal of Differential Equations, 1988