Abstract
With the use of Monte Carlo methods, the effects of particle drift on diffusion-limited aggregation have been investigated. If particle-drift effects are dominant, the particles follow essentially linear trajectories (Hausdorff dimensionality Dt=1.0) and the resulting clusters have uniform structure on all but the shortest length scales (Dc=d=2 for clusters grown on a two-dimensional lattice). If the effects of drift are small, the particles follow Brownian trajectories (Dt=2.0,) and the clusters have a Hausdorff dimensionality given by Dc5d6 (for small d). For intermediate cases, the clusters have a structure similar to clusters grown with the use of the Witten-Sander model of diffusion-limited aggregation on short length scales (Dc5d6) but are uniform on longer length scales (Dc=d). All of the simulations reported in this paper have been carried out using two-dimensional square lattices. However, similar results have been obtained with closely related non-lattice models, and we expect that similar results will also be obtained in higher dimensions. A crossover from a fractal structure on short length scales to a uniform structure (D=d) on longer length scales should also be observed for the deposition of particles on fibers and surfaces.