Chebyshev Approximation by Exponentials on Finite Subsets
- 1 April 1973
- journal article
- Published by JSTOR in Mathematics of Computation
- Vol. 27 (122) , 327-331
- https://doi.org/10.2307/2005619
Abstract
This paper is concerned with Chebyshev approximation by exponentials on finite subsets. We take into account that varisolvency does not hold for exponentials in general. A bound for the derivatives of exponentials is established and convergence of the solutions for the discrete problems is proved in the topology of compact convergence on the open interval.Keywords
This publication has 8 references indexed in Scilit:
- On a paper of C. B. Dunham concerning degeneracy in mean nonlinear approximationJournal of Approximation Theory, 1973
- Exponential Chebyshev Approximation on Finite Subsets of [ 0, 1 ]Mathematics of Computation, 1971
- Zur kompaktheit bei exponentialsummenJournal of Approximation Theory, 1970
- Die Konstruktion der Tschebyscheff-Approximierenden bei der Anpassung mit ExponentialsummenJournal of Approximation Theory, 1970
- Der Existenzsatz für das Tschebyscheffsche Approximations-Problem mit ExponentialsummenPublished by Springer Nature ,1969
- Approximation mit ExponentialsummenComputing, 1967
- Approximation from a curve of functionsArchive for Rational Mechanics and Analysis, 1967
- Tchebycheff Approximations by Functions Unisolvent of Variable DegreeTransactions of the American Mathematical Society, 1961