Catalyzed Destructive Adsorption of Environmental Toxins with Nanocrystalline Metal Oxides. Fluoro-, Chloro-, Bromocarbons, Sulfur, and Organophosophorus Compounds
- 29 December 2001
- journal article
- research article
- Published by American Chemical Society (ACS) in Environmental Science & Technology
- Vol. 36 (4) , 762-768
- https://doi.org/10.1021/es010733z
Abstract
In the temperature range of 300−500 °C, solid nanocrystalline oxides react nearly stoichiometrically with numerous halocarbons, sulfur, and organophosphorus compounds. In some cases, the reaction efficiencies can be improved by the presence of a small amount of transition-metal oxide as catalyst; for example, Fe2O3 on CaO and mobile intermediate species such as FeCl3 or Fe(SO3)x are important in the catalytic process. Herein, a series of environmentally problematic compounds are discussed, including CCl4, COS, CS2, C2Cl4, CHCl3, CH2Cl2, CH3Cl, and (CH3O)2P(O)CH3. Nanocrystals of CaO coated with a thin layer of Fe2O3 (or other transition metals) ≡[Fe2O3]CaO, or intimately mixed ≡Fe2O3/CaO were compared with pure CaO. It was found that (a) the presence of a small amount of surface [Fe2O3] or other transition-metal oxide can have a marked effect on the destructive adsorption activity, (b) for some reagents, such as CCl4, C2Cl4, SO2 and others, the nanocrystalline CaO can react in stoichiometric amounts, especially if a transition-metal oxide catalyst is present, (c) although the reaction with dimethylmethylphosphonate is surface-limited, the nanocrystalline calcium oxide performed well and in high capacity, (d) nanocrystalline calcium oxide exhibits near stoichiometric activity with several interesting sulfur-containing compounds, such as COS and CS2, (e) unfortunately, most fluorocarbons were not destructively adsorbed at 500 °C under the conditions employed; however, some of these can be effectively mineralized over the calcium oxide at higher temperatures. These compounds include C2F6, C3F6, C2ClF3, and CHF3, and (f) upon reaction, surface areas decreased considerably, from about 100 to about 10 m2/g. The results of these experiments further demonstrate that, with the proper choice of catalytic material, some solid−gas reactions can be engineered to be rapid and essentially stoichiometric.Keywords
This publication has 12 references indexed in Scilit:
- Catalytic Solid State Reactions on the Surface of Nanoscale Metal Oxide ParticlesJournal of Catalysis, 1998
- EXAFS Observation of the Sr and Fe Site Structural Environment in SrO and Fe2O3-Coated SrO Nanoparticles Used as Carbon Tetrachloride Destructive AdsorbentsChemistry of Materials, 1998
- Nanocrystals as Stoichiometric Reagents with Unique Surface ChemistryThe Journal of Physical Chemistry, 1996
- Enhancing Effect of Fe2O3 on the Ability of Nanocrystalline Calcium Oxide to Adsorb SO2Journal of the American Chemical Society, 1996
- Decontamination of chemical warfare agentsChemical Reviews, 1992
- Nano-scale metal oxide particles as chemical reagents. Destructive adsorption of a chemical agent simulant, dimethyl methylphosphonate, on heat-treated magnesium oxideLangmuir, 1991
- Fourier transform infrared photoacoustic spectroscopy study of the adsorption of organophosphorus compounds on heat-treated magnesium oxideLangmuir, 1991
- Photoluminescent response of palladium-cadmium sulfide and palladium-graded cadmium sulfoselenide Schottky diodes to molecular hydrogenLangmuir, 1985
- Anaerobic degradation of halogenated 1- and 2-carbon organic compoundsEnvironmental Science & Technology, 1981
- Catalytic Conversion of Organophosphate Vapor over Platinum-AluminaIndustrial & Engineering Chemistry Process Design and Development, 1966