Abstract
Summary: Some simple heuristic properties of conditional independence are shown to form a conceptual framework for much of the theory of statistical inference. This framework is illustrated by an examination of the rôle of conditional independence in several diverse areas of the field of statistics. Topics covered include sufficiency and ancillarity, parameter identification, causal inference, prediction sufficiency, data selection mechanisms, invariant statistical models and a subjectivist approach to model-building.

This publication has 25 references indexed in Scilit: