Adaptation to a Visuomotor Shift Depends on the Starting Posture

Abstract
Previous studies have shown that human subjects can adapt to a new visuomotor relationship that depends on the trajectory of the arm. However, these studies have not distinguished between hand- and joint-based learning models. We have examined whether different endpoint kinematics are necessary to obtain a differential visuomotor shift. The joint trajectory was varied by changing the initial posture, while maintaining a similar finger trajectory. After learning, maximum after-effects were found when movement began with the posture used during exposure to the visuomotor shift and decreased with the difference between initial and trained posture. This was shown to be independent of the final posture attained. Our results show that adaptation to a visual remapping cannot be due to the recoding of a desired final posture and depends on the arm trajectory in joint space.