Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary

Abstract
The dynamics of laser-produced cavitation bubbles near a solid boundary and its dependence on the distance between bubble and wall are investigated experimentally. It is shown by means of high-speed photography with up to 1 million frames/s that jet and counterjet formation and the development of a ring vortex resulting from the jet flow are general features of the bubble dynamics near solid boundaries. The fluid velocity field in the vicinity of the cavitation bubble is determined with time-resolved particle image velocimetry. A comparison of path lines deduced from successive measurements shows good agreement with the results of numerical calculations by Kucera & Blake (1988). The pressure amplitude, the profile and the energy of the acoustic transients emitted during spherical bubble collapse and the collapse near a rigid boundary are measured with a hydrophone and an optical detection technique. Sound emission is the main damping mechanism in spherical bubble collapse, whereas it plays a minor part in the damping of aspherical collapse. The duration of the acoustic transients is 20-30 ns. The highest pressure amplitudes at the solid boundary have been found for bubbles attached to the boundary. The pressure inside the bubble and at the boundary reaches about 2.5 kbar when the maximum bubble radius is 3.5 mm. The results are discussed with respect to the mechanism of cavitation erosion.