Current steps attributed to resonant tunneling through individual InAs quantum dots embedded in a GaAs-AlAs-GaAs tunneling device are investigated experimentally in magnetic fields up to 28 T. The steps evolve into strongly enhanced current peaks in high fields. This can be understood as a field-induced Fermi-edge singularity due to the Coulomb interaction between the tunneling electron on the quantum dot and the partly spin polarized Fermi sea in the Landau quantized three-dimensional emitter.