An experimental investigation for the stochastic modelling of the resultant force system in BTA deep hole machining

Abstract
This paper presents the measurement and a statistical analysis of the resultant force system, consisting of an axial force and torque, in BTA deep hole machining. The measurements were performed using a specially designed two-component piezoelectric dynamometer and adopting the rotating cutting tool-stationary workpiece procedure. The dynamometer was calibrated for static and dynamic outputs and techniques were employed for increasing the measuring accuracy and reducing the cross-interference by obtaining the elements of the system transfer function. Experiments were carried out to measure the mean values and the dynamic fluctuations of the axial force and torque. The recorded data was processed and analysed to establish all major statistical properties of the axial force and torque. Results show that the dynamic fluctuations of the axial force and torque in BTA deep hole machining can be represented by a stationary wideband process with a gaussian density distribution function. Such a mathematical model is essential for evaluating the dynamic response of the machine-workpiece system as well as the true motion of the cutting tool tip, and to establish the reliability of the machining process.