A Flexible B‐Spline Model for Multiple Longitudinal Biomarkers and Survival

Abstract
SummaryOften when jointly modeling longitudinal and survival data, we are interested in a multivariate longitudinal measure that may not fit well by linear models. To overcome this problem, we propose a joint longitudinal and survival model that has a nonparametric model for the longitudinal markers. We use cubic B‐splines to specify the longitudinal model and a proportional hazards model to link the longitudinal measures to the hazard. To fit the model, we use a Markov chain Monte Carlo algorithm. We select the number of knots for the cubic B‐spline model using the Conditional Predictive Ordinate (CPO) and the Deviance Information Criterion (DIC). The method and model selection approach are validated in a simulation. We apply this method to examine the link between viral load, CD4 count, and time to event in data from an AIDS clinical trial. The cubic B‐spline model provides a good fit to the longitudinal data that could not be obtained with simple parametric models.

This publication has 23 references indexed in Scilit: