Process and Catalyst Needs for Hydrodenitrogenation

Abstract
During the last decade there has been increased interest in the production of synthetic fuels and chemicals feedstocks from coal and oil shale due to declining petroleum reserves. Table 1 gives the projected gasoline to mid-distillate ratio through the year 2000 and beyond; the shift is away from high-octane fuels requiring a relatively high aromatics content and a relatively low hydrogen content to highly paraffin-based fuels having a high hydrogen content. Figure 1 shows the projected United States energy supply and demand through the year 1990 [2], Current petroleum production in the contiguous United States is about 9 million bbl/day and has declined at a rate of about 0.5 million bbl/day per year for a number of years. Alaskan oil will arrest this decline in production briefly but will not make up for even the loss in the rate of petroleum production incurred in the contiguous 48 states during the last 5 years. In all probability, declining production from current oil fields will not be offset by further new discoveries, and thus the United States will become increasingly dependent on foreign oil. Further, petroleum feedstocks are becoming harder to process as crude quality decreases, and as it becomes more and more necessary to process the bottom of the barrel. Declining oil supply in the face of increasing demand will ultimately require that some of the projected gap be made up with synthetics made from coal and oil shale. Such synthetic feedstocks and heavier petroleum fractions contain higher concentrations of nitrogen than light petroleum stocks, are decidedly more difficult to process, and will place increasing demands on hydroprocessing catalysts and processes.