Blocking the Anoxic Depolarization Protects Without Functional Compromise Following Simulated Stroke in Cortical Brain Slices
Open Access
- 1 February 2005
- journal article
- research article
- Published by American Physiological Society in Journal of Neurophysiology
- Vol. 93 (2) , 963-979
- https://doi.org/10.1152/jn.00654.2004
Abstract
Within 2 min of stroke onset, neurons and glia in brain regions most deprived of blood (the ischemic core) undergo a sudden and profound loss of membrane potential caused by failure of the Na+/K+ ATPase pump. This anoxic depolarization (AD) represents a collapse in membrane ion selectivity that causes acute neuronal injury because neurons simply cannot survive the energy demands of repolarization while deprived of oxygen and glucose. In vivo and in live brain slices, the AD resists blockade by antagonists of neurotransmitter receptors (including glutamate) or by ion channel blockers. Our neuroprotective strategy is to identify AD blockers that minimally affect neuronal function. If the conductance underlying AD is not normally active, its selective blockade should not alter neuronal excitability. Imaging changes in light transmittance in live neocortical and hippocampal slices reveal AD onset, propagation, and subsequent dendritic damage. Here we identify several sigma-1 receptor ligands that block the AD in slices that are pretreated with 10–30 μM of ligand. Blockade prevents subsequent cell swelling, dendritic damage, and loss of evoked field potentials recorded in layers II/III of neocortex and in the CA1 region of hippocampus. Even when AD onset is merely delayed, electrophysiological recovery is markedly improved. With ligand treatment, evoked axonal conduction and synaptic transmission remain intact. The large nonselective conductance that drives AD is still unidentified but represents a prime upstream target for suppressing acute neuronal damage arising during the first critical minutes of stroke. Sigma receptor ligands provide insight to better define the properties of the channel responsible for anoxic depolarization. Video clips of anoxic depolarization and spreading depression can be viewed at http://anatomy.queensu.ca/faculty/andrew.cfm . 1Keywords
This publication has 80 references indexed in Scilit:
- [3H]BHDP as a novel and selective ligand for σ1 receptors in liver mitochondria and brain synaptosomes of the ratFEBS Letters, 2003
- Spreading Depression: Imaging and Blockade in the Rat Neocortical Brain SliceJournal of Neurophysiology, 2002
- Glutamate Does Not Mediate Acute Neuronal Damage after Spreading Depression Induced by O2/Glucose Deprivation in the Hippocampal SliceJournal of Cerebral Blood Flow & Metabolism, 2000
- Interpretation of Intrinsic Optical Signals and Calcein Fluorescence during Acute Excitotoxic Insult in the Hippocampal SliceNeuroImage, 1999
- Role of Astrocytes in the Spreading Depression Signal Between Ischemic Core and PenumbraNeuroscience & Biobehavioral Reviews, 1997
- Modulation of nmda and dopaminergic neurotransmissions by sigma ligands: Possible implications for the treatment of psychiatric disordersLife Sciences, 1996
- Functional and Morphological Changes Induced by Transient in Vivo IschemiaExperimental Neurology, 1994
- NMDA‐receptor blockers but not NBQX, an AMPA‐receptor antagonist, inhibit spreading depression in the rat brainActa Physiologica Scandinavica, 1992
- Whole-cell membrane current and membrane resistance during hypoxic spreading depressionNeuroReport, 1992
- Dextromethorphan and sigma ligands: Common sites but diverse effectsLife Sciences, 1989