Abstract
Our understanding of the mechanism by which topological defects are formed in symmetry breaking phase transitions has recently changed. We examine the non-equilibrium dynamics of defect formation for weakly-coupled global O(N) theories possessing vortices (strings) and monopoles. It is seen that, as domains form and grow, defects are swept along on their boundaries at a density of about one defect per coherence area (strings) or per coherence volume (monopoles).

This publication has 0 references indexed in Scilit: