Serial passage of the parasite Crithidia bombi within a colony of its host, Bombus terrestris , reduces success in unrelated hosts

Abstract
In the wild, Bombus spp. bees may contract infections of the trypanosome parasite Crithidia bombi from their nestmates or from others while foraging on contaminated flowers. We expected that as C. bombi is transmitted repeatedly among related workers within a colony, the parasite population would become more successful in this relatively homogeneous host population and less successful in individuals from unrelated colonies of the same or different species. To test our prediction, we serially passaged cocktails of C. bombi strains through workers from the same colony, taking the intensity of infection in related versus unrelated workers as a measure of parasite success at each step in the serial transfer. Using a repeated measures ANOVA, we found the ability of C. bombi to exploit Bombus spp. hosts did not increase within a colony, but did decrease for infections in workers from unrelated colonies. This reduction in success is most likely due to a gradual loss of appropriate C. bombi strains from the infecting the population as the cocktail is 'filtered' during the serial passage within a given colony, without a corresponding increase in overall intensity of the surviving strains.