Natural Convection Heat Transfer From a Horizontal Cylinder Between Vertical Confining Adiabatic Walls

Abstract
This paper reports an experimental study of natural convection heat transfer from a horizontal isothermal cylinder between vertical adiabatic walls. Some of the industrial applications of this problem are cooling and casing design of electronic equipment, nuclear reactor safety, and heat extraction from solar thermal storage devices. Heat transfer from 3.81 cm and 2.54 cm diameter cylinders was determined by measuring the electric power supplied to the heater, which was placed inside the cylinders, and correcting for radiation and end losses. Average Nusselt numbers were determined for a Rayleigh number range of 2 × 103 to 3 × 105 and wall spacing to cylinder diameter ratios of 1.5, 2, 3, 4, 6, 8, 10, 12, and ∞. It was found that the confinement of a heated horizontal cylinder by adiabatic walls enhances the heat transfer from the cylinder continuously. This effect is more pronounced at low Rayleigh numbers. A maximum relative enhancement of 45 percent was obtained over the range of experimental conditions studied. Schlieren and flow visualization studies were conducted at selected values of Rayleigh number and wall spacing to cylinder diameter ratios to further explain the heat transfer characteristics and the associated flow physics of the present problem.

This publication has 0 references indexed in Scilit: