Hierarchical Gabor filters for object detection in infrared images
- 1 January 1994
- conference paper
- Published by Institute of Electrical and Electronics Engineers (IEEE)
- No. 10636919,p. 628-631
- https://doi.org/10.1109/cvpr.1994.323789
Abstract
This paper presents a new representation called "hierarchical Gabor filters" and associated novel local measures which are used to detect potential objects of interest in images. The "first stage" of the approach uses a wavelet set of wide-bandwidth separable Gabor filters to extract local measures from an image. The "second stage" makes certain spatial groupings explicit by creating small-bandwidth, non-separable Gabor filters that are tuned to elongated contours or periodic patterns. The non-separable filter responses are obtained from a weighted combination of the separable basis filters, which preserves the computational efficiency of separable filters while providing the distinctiveness required to discriminate objects from clutter. This technique is demonstrated on images obtained from a forward looking infrared (FLIR) sensor.Keywords
This publication has 4 references indexed in Scilit:
- Iterative methods for solving the Gabor expansion: considerations of convergenceIEEE Transactions on Image Processing, 1992
- Phase-based disparity measurementCVGIP: Image Understanding, 1991
- Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filtersJournal of the Optical Society of America A, 1985
- Gabor's expansion of a signal into Gaussian elementary signalsProceedings of the IEEE, 1980