Abstract
Using the Feigenbaum renormalization group (RG) transformation we work out exactly the dynamics and the sensitivity to initial conditions for unimodal maps of nonlinearity $\zeta >1$ at both their pitchfork and tangent bifurcations. These functions have the form of $q$-exponentials as proposed in Tsallis' generalization of statistical mechanics. We determine the $q$-indices that characterize these universality classes and perform for the first time the calculation of the $q$-generalized Lyapunov coefficient $\lambda_{q} $. The pitchfork and the left-hand side of the tangent bifurcations display weak insensitivity to initial conditions, while the right-hand side of the tangent bifurcations presents a `super-strong' (faster than exponential) sensitivity to initial conditions. We corroborate our analytical results with {\em a priori} numerical calculations.