Abstract
We have performed a likelihood analysis of the recent data on the Cosmic Microwave Background Radiation (CMBR) anisotropy taken by the Boomerang experiment. We find that this data places a strong upper bound on the radiation density present at recombination. Expressed in terms of the equivalent number of neutrino species the $2\sigma$ bound is N_nu < 13, and the standard model prediction, N_nu = 3.04, is completely consistent the the data. This bound is complementary to the one found from Big Bang nucleosynthesis considerations in that it applies to any type of radiation, i.e. it is not flavour sensitive. It also applies to the universe at a much later epoch, and as such places severe limits on scenarios with decaying neutrinos. The bound also yields a firm upper limit on the lepton asymmetry in the universe.

This publication has 0 references indexed in Scilit: