MICROTUBULE BIOGENESIS AND CELL SHAPE IN OCHROMONAS
Open Access
- 1 February 1973
- journal article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 56 (2) , 360-378
- https://doi.org/10.1083/jcb.56.2.360
Abstract
The proposal made in the preceding paper that the species-specific shape of Ochromonas is mediated by cytoplasmic microtubules which are related to two nucleating sites has been experimentally verified. Exposure of cells to colchicine or hydrostatic pressure causes microtubule disassembly and a correlative loss of cell shape in a posterior to anterior direction. Upon removal of colchicine or release of pressure, cell shape regenerates and microtubules reappear, first in association with the kineto-beak site concomitant with regeneration of the anterior asymmetry, and later at the rhizoplast site concomitant with formation of the posterior tail. It is concluded that two separate sets of cytoplasmic tubules function in formation and maintenance of specific portions of the total cell shape. On the basis of the following observations, we further suggest that the beak and rhizoplast sites could exert control over the position and timing of the appearance, the orientation, and the pattern of microtubule distribution in Ochromonas. (a) the two sites are accurately positioned in the cell relative to other cell organelles; (b) in regenerating cells microtubules reform first at these sites and appear to elongate to the cell posterior; (c) microtubules initially reappear in the orientation characteristic of the fully differentiated cell; (d) the two sets of tubules are polymerized at different times, in the same sequence, during reassembly or resynthesis of the microtubular system. Experiments using cycloheximide, after a treatment with colchicine, have demonstrated that Ochromonas cannot reassume its normal shape without new protein synthesis. This suggests that microtubule protein once exposed to colchicine cannot be reassembled into microtubules. Pressure-treated cells, on the other hand, reassemble tubules and regenerate the normal shape in the presence or absence of cycloheximide. The use of these two agents in analyzing nucleating site function and the independent processes of synthesis and assembly of microtubules is discussed.Keywords
This publication has 23 references indexed in Scilit:
- SEROLOGICAL SIMILARITY OF FLAGELLAR AND MITOTIC MICROTUBULESThe Journal of cell biology, 1971
- A comparative study of microtubules of disk-shaped blood cellsJournal of Ultrastructure Research, 1970
- FLAGELLAR ELONGATION AND SHORTENING IN CHLAMYDOMONAS The Journal of cell biology, 1969
- MICROTUBULES IN THE FORMATION AND DEVELOPMENT OF THE PRIMARY MESENCHYME IN ARBACIA PUNCTULATA The Journal of cell biology, 1969
- MICROTUBULES IN THE FORMATION AND DEVELOPMENT OF THE PRIMARY MESENCHYME IN ARBACIA PUNCTULATA The Journal of cell biology, 1969
- MICROTUBULAR CRYSTALS IN MAMMALIAN CELLSThe Journal of cell biology, 1969
- Differential effects of antimitotic agents on the stability and behavior of cytoplasmic and ciliary microtubulesProtoplasma, 1968
- THE MECHANISM OF ACTION OF COLCHICINEThe Journal of cell biology, 1967
- Cell Motility by Labile Association of Molecules1967
- STUDIES ON THE MICROTUBULES IN HELIOZOAThe Journal of cell biology, 1966