Rapidly Induced Wound Ethylene from Excised Segments of Etiolated Pisum sativum L., cv. Alaska
Open Access
- 1 April 1978
- journal article
- research article
- Published by Oxford University Press (OUP) in Plant Physiology
- Vol. 61 (4) , 675-679
- https://doi.org/10.1104/pp.61.4.675
Abstract
Wound-induced ethylene synthesis by subapical stem sections of etiolated Pisum sativum L., cv. Alaska seedlings, as described by Saltveit and Dilley (Plant Physiol 1978 61: 447-450), was half-saturated at 3.6% (v/v) O2 and saturated at about 10% O2. Corresponding values for CO2 production during the same period were 1.1% and 10% O2, respectively. Anaerobiosis stopped all ethylene evolution and delayed the characteristic pattern of wound ethylene synthesis. Exposing tissue to 3.5% CO2 in air in a flow-through system reduced wound ethylene synthesis by 30%. Enhancing gas diffusivity by reducing the total pressure to 130 mm Hg almost doubled the rate of wound ethylene synthesis and this effect was negated by exposure to 250 μl liter−1 propylene. Applied ethylene or propylene stopped wound ethylene synthesis during the period of application, but unlike N2, no lag period was observed upon flushing with air. It is concluded that the characteristic pattern of wound-induced ethylene synthesis resulted from negative feedback control by endogenous ethylene. No wound ethylene was produced for 2 hours after excision at 10 or 38 C. Low temperatures prolonged the lag period, but did not prevent induction of the wound response, since tissue held for 2 hours at 10 C produced wound ethylene immediately when warmed to 30 C. In contrast, temperatures above 36 C prevented induction of wound ethylene synthesis, since tissue cooled to 30 C after 1 hour at 40 C required 2 hours before ethylene production returned to normal levels. The activation energy between 15 and 36 C was 12.1 mole kilocalories degree−1.This publication has 14 references indexed in Scilit:
- Ethylene in Plant GrowthProceedings of the National Academy of Sciences, 1973
- The influence of temperature-induced phase changes on the kinetics of respiratory and other membrane-associated enzyme systemsJournal of Bioenergetics and Biomembranes, 1973
- Treatment of Fruit with Propylene gives Information about the Biogenesis of EthyleneNature, 1972
- Ethylene Biosynthesis in Fruit TissuesPlant Physiology, 1971
- Oxidative Activity of Mitochondria Isolated from Plant Tissues Sensitive and Resistant to Chilling InjuryPlant Physiology, 1970
- Ethylene Evolution Stimulated by Chilling in Citrus and Persea SpPlant Physiology, 1969
- Ethylene as a Component of the Emanations From Germinating Peanut Seeds and Its Effect on Dormant Virginia-type SeedsPlant Physiology, 1969
- Molecular Requirements for the Biological Activity of EthylenePlant Physiology, 1967
- Stimulation of Ethylene Production in Apple Tissue Slices by MethioninePlant Physiology, 1966
- THE PHYSIOLOGY OF ETHYLENE FORMATION IN APPLESProceedings of the National Academy of Sciences, 1959