Abstract
Mucosal surfaces are the main natural site of entry into the body for human immunodeficiency virus (HIV). Herein, an alternative mechanism for virus spread is described. The mechanism, which involves transcytosis of endosome-internalized HIV-particles, was generated by contact of HIV-infected cells with the apical surface of an epithelial cell line. Transcytosed viruses rapidly (in 20–30 min) access the serosal side of the epithelial barrier without infecting the epithelium itself. In turn, transcytosed HIV could infect host submucosal mononucleated target cells, and thus the infection could spread. An investigation was done to determine whether mucosal antibodies could block HIV transcytosis. Both secretory IgA (S-IgA) and IgG that were purified from colostrum from HIV-seropositive women impaired HIV transcytosis, irrespective of the level of the recombinant HIV envelope anti-gp160-specific activities in an ELISA. However, specific S-IgAs were more efficient than IgG. Therefore, mucosal-specific S-IgA to HIV-1 could be relevant to reducing infectivity of HIV-1 in corporeal fluids.