Abstract
A method of field quantization is investigated which is more general than the usual methods of quantization in accordance with Bose of Fermi statistics, though these are included in the scheme. The commutation properties and matrix representations of the quantized field amplitudes are determined, and the energy levels of the field are derived in the usual way. It is shown that spin-half fields can be quantized in such a way that an arbitrary finite number of particles can exist in each eigenstate. With the generalized statistics, the interchange of two particles of the same kind may or may not be physically significant, according to the type of interaction by means of which they are created or annihilated. Physical consequences of the assumption that there are particles which obey the generalized statistics are briefly examined.

This publication has 7 references indexed in Scilit: