Abstract
A comparison of the rate constants and activation energies for the hydrolysis of cellobiose, cellotriose, cellotetraose, and cellopentaose by Myrothecium cellulase showed that while the rate constant was increased by a factor of about 450 as the degree of polymerization (D.P.) of the substrate was increased from two to five, the activation energy remained at about 12,000 cal. The results are interpreted, in terms of classical collision theory, as indicating that the increase in rate constant with D.P. is determined by an increase in the steric factor with D.P. Addition of a β-linked sorbityl group to an oligoglucoside increased the rate constant; the increase was less than that from addition of an anhydroglucose unit and, relative to the latter, diminished as the D.P. of the chain undergoing addition was increased. Exposing the enzyme to conditions favoring thermal or surface denaturation caused varying losses in enzymic activity towards the four oligoglucosides; wherever the loss in activity towards one oligoglucoside differed substantially from the loss in activity towards any other oligoglucoside, the greater loss was shown towards the substrate of lower D.P. The results are discussed.

This publication has 2 references indexed in Scilit: