Highly Efficient Sequence-Specific DNA Interstrand Cross-Linking by Pyrrole/Imidazole CPI Conjugates
- 1 March 2003
- journal article
- research article
- Published by American Chemical Society (ACS) in Journal of the American Chemical Society
- Vol. 125 (12) , 3471-3485
- https://doi.org/10.1021/ja028459b
Abstract
We have developed a novel type of DNA interstrand cross-linking agent by synthesizing dimers of a pyrrole (Py)/imidazole (Im)-diamide-CPI conjugate, ImPyLDu86 (1), connected using seven different linkers. The tetramethylene linker compound, 7b, efficiently produces DNA interstrand cross-links at the nine-base-pair sequence, 5‘-PyGGC(T/A)GCCPu-3‘, only in the presence of a partner triamide, ImImPy. For efficient cross-linking by 7b with ImImPy, one A·T base pair between two recognition sites was required to accommodate the linker region. Elimination of the A·T base pair and insertion of an additional A·T base pair and substitution with a G·C base pair significantly reduced the degree of cross-linking. The sequence specificity of the interstrand cross-linking by 7b was also examined in the presence of various triamides. The presence of ImImIm slightly reduced the formation of a cross-linked product compared to ImImPy. The mismatch partners, ImPyPy and PyImPy, did not produce an interstrand cross-link product with 7b, whereas ImPyPy and PyImPy induced efficient alkylation at their matching site with 7b. The interstrand cross-linking abilities of 7b were further examined using denaturing polyacrylamide gel electrophoresis with 5‘-Texas Red-labeled 400- and 67-bp DNA fragments. The sequencing gel analysis of the 400-bp DNA fragment with ImImPy demonstrated that 7b alkylates several sites on the top and bottom strands, including one interstrand cross-linking match site, 5‘-PyGGC(T/A)GCCPu-3‘. To obtain direct evidence of interstrand cross-linkages on longer DNA fragments, a simple method using biotin-labeled complementary strands was developed, which produced a band corresponding to the interstrand cross-linked site on both top and bottom strands. Densitometric analysis indicated that the contribution of the interstrand cross-link in the observed alkylation bands was approximately 40%. This compound efficiently cross-linked both strands at the target sequence. The present system consisted of a 1:2 complex of the alkylating agent and its partner ImImPy and caused an interstrand cross-linking in a sequence-specific fashion according to the base-pair recognition rule of Py-Im polyamides.Keywords
This publication has 70 references indexed in Scilit:
- Highly Cooperative DNA Dialkylation by the Homodimer of Imidazole−Pyrrole Diamide−CPI Conjugate with Vinyl LinkerJournal of the American Chemical Society, 2000
- Sequence-Specific DNA Alkylation by Hybrid Molecules between Segment A of Duocarmycin A and Pyrrole/Imidazole DiamideAngewandte Chemie International Edition in English, 1999
- Regulation of gene expression by small moleculesNature, 1997
- Total Synthesis of (+)-Duocarmycin A, epi-(+)-Duocarmycin A and Their Unnatural Enantiomers: Assessment of Chemical and Biological PropertiesJournal of the American Chemical Society, 1997
- Synthesis and Antitumor Activity of Duocarmycin Derivatives: Modification of Segment A of Duocarmycin B2.CHEMICAL & PHARMACEUTICAL BULLETIN, 1996
- Cross-Linkage by “Intact” Bizelesin and Bisalkylation by the “Separated Halves” of the Bizelesin Dimer: Contrasting Drug Manipulation of DNA Conformation (5‘-TAATTA-3‘) Directs Alkylation toward Different Adenine TargetsJournal of the American Chemical Society, 1996
- Affinity crosslinking of duplex DNA by a pyrrole-oligopeptide conjugateJournal of the American Chemical Society, 1993
- NMR and computational characterization of mitomycin cross-linked to adjacent deoxyguanosines in the minor groove of the d(T-A-C-G-T-A).cntdot.d(T-A-C-G-T-A) duplexBiochemistry, 1990
- Structures of Duocarmycins, novel antitumor antibiotics produced by Streptomyces sp.CHEMICAL & PHARMACEUTICAL BULLETIN, 1988
- Binding of an antitumor drug to DNAJournal of Molecular Biology, 1985