Abstract
CopR is one of the two copy number control elements of the streptococcal plasmid pIP501. It represses transcription of the repR mRNA encoding the essential replication initiator protein about 10- to 20-fold by binding to its operator region upstream of the repR promoter pII. CopR binds at two consecutive sites in the major groove of the DNA that share the consensus motif 5′-CGTG. Previously, the minimal operator was narrowed down to 17 bp, and equilibrium dissociation constants for DNA binding and dimerization were determined to be 0.4 nM and 1.4 μM, respectively. In this work, we used a SELEX procedure to study copR operator sequences of different lengths in combination with electrophoretic mobility shift assays of mutated copR operators as well as copy number determinations to assess the sequence requirements for CopR binding. The results suggest that in vivo evolution was directed at maximal binding affinity. Three simultaneous nucleotide exchanges outside the bases directly contacted by CopR only slightly affected CopR binding in vitro or copy numbers in vivo. Furthermore, the optimal spacer sequence was found to comprise 7 bp, to be AT rich, and to need an A/T and a T at the 3′ positions, whereas broad variations in the sequences flanking the minimal 17-bp operator were well tolerated.