N-vector spin models on the sc and the bcc lattices: a study of the critical behavior of the susceptibility and of the correlation length by high temperature series extended to order beta^{21}
Preprint
- 16 July 1997
Abstract
High temperature expansions for the free energy, the susceptibility and the second correlation moment of the classical N-vector model [also known as the O(N) symmetric classical spin Heisenberg model or as the lattice O(N) nonlinear sigma model] on the sc and the bcc lattices are extended to order beta^{21} for arbitrary N. The series for the second field derivative of the susceptibility is extended to order beta^{17}. An analysis of the newly computed series for the susceptibility and the (second moment) correlation length yields updated estimates of the critical parameters for various values of the spin dimensionality N, including N=0 [the self-avoiding walk model], N=1 [the Ising spin 1/2 model], N=2 [the XY model], N=3 [the Heisenberg model]. For all values of N, we confirm a good agreement with the present renormalization group estimates. A study of the series for the other observables will appear in a forthcoming paper.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: