Solar Energy Conversion by Water Photodissociation

Abstract
The basic concepts for direct and catalyzed photodissociation of water have been summarized. Water dissociation in closed-cycle processes based on endothermic photochemical reactions offers a potential solution to the solar energy conversion problem. Transition metal complexes, whose excited state chemistry is extremely rich (23, 24) although mostly unexplored, are, in principle, suitable "catalysts" for cycles of this type. The most interesting cycles are those involving metal hydrido complexes or binuclear complexes in which the two metal atoms are bound into a macrocyclic ligand. Systematic investigations of the photochemistry of transition metal complexes with the aim of designing suitable systems for solar energy conversion have long-range promise and merit further consideration.