Abstract
This article highlights the importance of crystal engineering in designing functional materials. Various rational design strategies will be discussed for controlling the molecular architectures of the materials using C–H⋯O, C–H⋯π, O–H⋯O, N–H⋯O and O–H⋯N hydrogen bonds and co-ordination bonds. The results described here show the role of guest molecules in templating the isomeric network structures with one set of molecular components. In particular, the materials that are designed based on strong hydrogen bonds and coordination bonds exhibited zeolite like and clay like properties.

This publication has 0 references indexed in Scilit: