Bile acids regulate hepatic low density lipoprotein receptor activity in the hamster by altering cholesterol flux across the liver.
- 1 March 1986
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 83 (6) , 1916-1920
- https://doi.org/10.1073/pnas.83.6.1916
Abstract
The effect of different bile acids on receptor-dependent and receptor-independent low density lipoprotein (LDL) uptake in the liver and intestine was investigated. When fed at the 0.1% level for three weeks, cholic acid and chenodeoxycholic acid suppressed hepatic cholesterol synthesis in the rat by 80% and 50%, respectively, while ursodeoxycholic acid has no effect. In contrast, hepatic cholesteryl ester levels, rates of hepatic LDL transport, and concentrations of plasma LDL-cholesterol were not affected by bile acid feeding in this species. Cholic acid and chenodeoxycholic acid also suppressed hepatic cholesterol synthesis in the hamster. However, since basal rates of hepatic cholesterol synthesis in this species, as in man, are very low, the absolute reduction in hepatic synthesis could not compensate for the change in hepatic sterol balance induced by bile acid feeding. Hence, in the hamster the feeding of cholic acid and chenodeoxycholic acid increased hepatic cholesteryl ester levels of 660% and 39%, respectively, reduced hepatic receptor-dependent LDL uptake by 50% and 32%, respectively, and elevated plasma LDL-cholesterol levels by 160% and 50%, respectively. Ursodeoxycholic acid feeding did not alter any of these processes, and none of the bile acids changed the rate of hepatic receptor-independent LDL transport. In the intestine, none of the bile acids altered rates of cholesterol synthesis or LDL uptake. When cholic acid, chenodeoxycholic acid, or ursodeoxycholic acid was infused continuously for 8 hr in supranormal amounts into control hamsters or rats or into animals pretreated with cholestyramine, there were no changes in LDL transport or any other parameter of hepatic cholesterol metabolism. Thus, these studies indicated that cholic acid and chenodeoxycholic acid have no acute, direct effect on rates of receptor-dependent LDL transport or cholesterol synthesis but do alter these processes indirectly by inducing changes in cholesterol balance across the liver. Ursodeoxycholic acid, in contrast, does not affect these processes either directly or indirectly and so causes no changes in plasma LDL levels.This publication has 23 references indexed in Scilit:
- Receptor-independent low density lipoprotein transport in the rat in vivo. Quantitation, characterization, and metabolic consequences.Journal of Clinical Investigation, 1985
- Chenodiol (Chenodeoxycholic Acid) for Dissolution of Gallstones: The National Cooperative Gallstone StudyAnnals of Internal Medicine, 1981
- Regulation of rates of cholesterol synthesis in vivo in the liver and carcass of the rat measured using [3H]water.Journal of Lipid Research, 1980
- Inhibition of receptor-mediated clearance of lysine and arginine modified lipoproteins from the plasma of rats and monkeysProceedings of the National Academy of Sciences, 1980
- Radiolabeled sucrose covalently linked to protein. A device for quantifying degradation of plasma proteins catabolized by lysosomal mechanisms.Journal of Biological Chemistry, 1979
- The effect of chenodeoxycholic acid (CDCA) on cholesterol absorptionGastroenterology, 1979
- Relative importance of high and low density lipoproteins in the regulation of cholesterol synthesis in the adrenal gland, ovary, and testis of the rat.Journal of Biological Chemistry, 1978
- Ursodeoxycholic acid effects on sterol metabolism in ratsBiochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 1978
- Re-evaluation of the 3 alpha-hydroxysteroid dehydrogenase assay for total bile acids in bile.Journal of Lipid Research, 1978
- An Electrophoretic Method for the Quantitative Isolation of Human and Swine Plasma LipoproteinsBiochemistry, 1974