Monte Carlo-Self Consistent Field Study of the Symmetrical Models of Polyelectrolytes

Abstract
Time saving procedures unifying Monte Carlo and self consistent field approaches for the calculation of equilibrium potentials and density distributions of mobile ions around a polyion in a polyelectrolyte system are considered. In the final version of the method the region around the polyion is divided into two zones—internal and external; all the ions of the internal zone are accounted for explicitly in a Monte Carlo procedure, in the external zone the self consistent field approximation is applied with an exchange of ions between regions. Simulations are carried out for cylindrical and spherical polyions in solutions with mono-and divalent ions and their mixtures. The results are compared with Poisson—Boltzmann approximation and experimental data on intrinsic viscosity.