On the population of primordial star clusters in the presence of UV background radiation

Abstract
We use the algorithm of Cole et al. (2000) to generate merger trees for the first star clusters in a Lambda CDM cosmology under an isotropic UV background radiation field, parametrized by J_21. We have investigated the problem in two ways: a global radiation background and local radiative feedback surrounding the first star clusters. Cooling in the first halos at high redshift is dominated by molecular hydrogen, H_2 - we call these Generation 1 objects. At lower redshift and higher virial temperature, T_vir > 10^4K, electron cooling dominates - we call these generation 2. Radiation fields act to photo-dissociate H_2, but also generate free electrons that can help to catalyse its production. At modest radiation levels, J_{21}/(1+z)^3 ~ 10^{-12}-10^{-7}, the nett effect is to enhance the formation of Generation 1 star-clusters. At higher fluxes the heating from photo-ionisation dominates and halts their production. With a realistic build-up of flux over time, the period of enhanced H_2 cooling is so fleeting as to be barely discernable and the nett effect is to move primordial star cluster formation towards Generation 2 objects at lower redshift. A similar effect is seen with local feedback. Provided that enough photons are produced to maintain ionization of their host halo, they will suppress the cooling in Generation 1 halos and boost the numbers of primordial star clusters in Generation 2 halos. Significant suppression of Generation~1 halos occurs for specific photon fluxes in excess of about 10^{43} ph s^{-1} Msun^{-1}.

This publication has 0 references indexed in Scilit: