Shuttling Dynamics in an Acid–Base‐Switchable [2]Rotaxane
- 6 October 2005
- journal article
- research article
- Published by Wiley in Chemphyschem
- Vol. 6 (10) , 2145-2152
- https://doi.org/10.1002/cphc.200500295
Abstract
Molecular shuttles are an intriguing class of rotaxanes which constitute prototypes of mechanical molecular machines and motors. By using stopped‐flow spectroscopic techniques in acetonitrile solution, we investigated the kinetics of the shuttling process of a dibenzo[24]crown‐8 ether (DB24C8) macrocycle between two recognition sites or “stations”—a secondary ammonium (NH2+)/amine (NH) center and a 4,4′‐bipyridinium (bipy2+) unit—located on the dumbbell component in a [2]rotaxane. The affinity for DB24C8 decreases in the order NH2+>bipy2+>NH. Hence, shuttling of the DB24C8 macrocycle can be obtained by deprotonation and reprotonation of the ammonium station, reactions which are easily accomplished by addition of base and acid to the solution. The rate constants were measured as a function of temperature in the range 277–303 K, and activation parameters for the shuttling motion in both directions were determined. The effect of different counterions on the shuttling rates was examined. The shuttling from the NH2+ to the bipy2+ station, induced by the deprotonation of the ammonium site, is considerably slower than the shuttling in the reverse direction, which is, in turn, activated by reprotonation of the amine site. The results show that the dynamics of the shuttling processes are related to the change in the intercomponent interactions and structural features of the two mutually interlocked molecular components. Our observations also indicate that the counterions of the cationic rotaxane constitute an important contribution to the activation barrier for shuttling.Keywords
This publication has 61 references indexed in Scilit:
- Transition metal-complexed catenanes and rotaxanes as molecular machine prototypesChemical Communications, 2005
- Molecular Reactors and Machines: Applications, Potential, and LimitationsChemistry – A European Journal, 2004
- Shuttling through Anion RecognitionAngewandte Chemie, 2004
- BionanotechnologyPublished by Wiley ,2004
- Redox‐Controllable Amphiphilic [2]RotaxanesChemistry – A European Journal, 2003
- Electrochemically Switchable Hydrogen-Bonded Molecular ShuttlesJournal of the American Chemical Society, 2003
- Molecular Devices and Machines – A Journey into the Nano WorldPublished by Wiley ,2003
- Künstliche molekulare MaschinenAngewandte Chemie, 2000
- Artificial Molecular MachinesPublished by Wiley ,2000
- A molecular shuttleJournal of the American Chemical Society, 1991