Muscarinic Receptors in the Cochlear Nucleus and Auditory Nerve of the Guinea Pig

Abstract
The specific-binding properties of l-[3H]quinuclidinyl benzilate, a muscarinic acetylcholine-receptor antagonist, were investigated in synaptic and other membrane preparations of the guinea pig cochlear nucleus and auditory nerve. Binding parameters for all experiments were consistent with a single binding site with a Hill coefficient of 1.0. The binding of the ligand was specific and of high affinity, with values of KD in the range of 30-80 pM. Bmax was 0.352 .+-. 0.023 pmol/mg protein for the dorsal cochlear nucleus and 0.215 .+-. 0.011 pmol/mg protein for the ventral cochlear nucleus. The dorsal cochlear nucleus/ventral cochlear nucleus ratio for density of muscarinic receptors (1.6/1.0) was maintained across 2 different buffer systems, which varied with respect to the inclusion of proteolysis inhibitors. The auditory nerve had a level of binding much below that of the cochlear nucleus, with Bmax = 0.052 .+-. 0.011 pmol/mg protein. The results of specific-binding experiments for l-[3H]quinuclidinyl benzilate support a role for acetylcholine as a neurotransmitter in the cochlear nucleus. The greater density of muscarinic receptors in the dorsal cochlear nucleus may indicate greater cholinergic activity in the dorsal relative to the ventral cochlear nucleus.