Multiwavelength array of single-frequency stabilized Fabry-Perot lasers

Abstract
We characterize the influence of controlled perturbations (slots) in the ridge waveguide of Fabry-Perot lasers emitting around 1550 nm. The slots are etched simultaneously with the ridge and each slot introduces an additional loss of 2.3 cm/sup -1/. The lasers emit with a single wavelength when more than three slots are introduced, in which case the interslot spacing strongly influences the lasing spectrum. An array of devices with differing slot arrangements are fabricated on a single chip where each laser emits at a single wavelength across a 30-nm band each with side-mode suppression ratios greater than 28 dB. The emission wavelengths are simulated with a model for lossy slots where each slot has an effective in-phase reflectivity of 0.7%.