Conditional involvement of striatal serotonin3 receptors in the control of in vivo dopamine outflow in the rat striatum

Abstract
Serotonin3 (5-HT3) receptors can affect motor control through an interaction with the nigrostriatal dopamine (DA) neurons, but the neurochemical basis for this interaction remains controversial. In this study, using in vivo microdialysis, we assessed the hypothesis that 5-HT3 receptor-dependent control of striatal DA release is conditioned by the degree of DA and/or 5-HT neuron activity and the means of DA release (impulse-dependent vs. impulse-independent). The different DA-releasing effects of morphine (1 and 10 mg/kg), haloperidol (0.01 mg/kg), amphetamine (1 and 2.5 mg/kg), and cocaine (10 and 20 mg/kg) were studied in the striatum of freely moving rats administered selective 5-HT3 antagonists ondansetron (0.1 mg/kg) or MDL 72222 (0.03 mg/kg). Neither of the 5-HT3 antagonists modified basal DA release by itself. Pretreatment with ondansetron or MDL 72222 reduced the increase in striatal DA release induced by 10 mg/kg morphine but not by 1 mg/kg morphine, haloperidol, amphetamine or cocaine. The effect of 10 mg/kg morphine was also prevented by intrastriatal ondansetron (1 microm) administration. Reverse dialysis with ondansetron also reduced the increase in DA release induced by the combination of haloperidol and the 5-HT reuptake inhibitor citalopram (1 mg/kg). Considering the different DA and 5-HT-releasing properties of the drugs used, our results demonstrate that striatal 5-HT3 receptors control selectively the depolarization-dependent exocytosis of DA only when central DA and 5-HT tones are increased concomitantly.