Viscoelasticity of Esophageal Tissue and Application of a QLV Model
- 11 May 2006
- journal article
- Published by ASME International in Journal of Biomechanical Engineering
- Vol. 128 (6) , 909-916
- https://doi.org/10.1115/1.2372473
Abstract
The time-dependent mechanical properties of the porcine esophagus were investigated experimentally and theoretically. It was hypothesized that the viscoelasticity was quasilinear, i.e., the time and strain effects were independent. In order to verify the separability of time and strain effects, the stress-relaxation test was conducted at various strains and the data were fitted with the Fung’s quasilinear viscoelastic (QLV) model. By using the material parameters obtained from the stress relaxation test, the cyclic peak stress and hysteresis were predicted. Results showed that the stress relaxed by 20–30% of the peak stress within the first and stabilized at at the time of . The relative stress relaxation (i.e., the difference of stress at a particular time to the final equilibrium stress normalized by the total difference of the peak and final stress) was not different significantly for various strains. It was also found that, by using the stress-time data during both the ramp and relaxation phases, the correlation between parameters was substantially reduced. The model could also predict the cyclic peak stress and hysteresis except for the underestimate of valley stress. We conclude that the QLV model could be used as the material characterization of the esophageal tissue.
Keywords
This publication has 29 references indexed in Scilit:
- Directional, Regional, and Layer Variations of Mechanical Properties of Esophageal Tissue and its Interpretation Using a Structure-Based Constitutive ModelJournal of Biomechanical Engineering, 2005
- Two-layered quasi-3D finite element model of the oesophagusMedical Engineering & Physics, 2004
- Nonlinear Viscoelasticity in Rabbit Medial Collateral LigamentAnnals of Biomedical Engineering, 2004
- Size and power required for motion with implication for the evolution of early hominidsJournal of Biomechanics, 2003
- Viscoelastic Characterization of Peripapillary Sclera: Material Properties by Quadrant in Rabbit and Monkey EyesJournal of Biomechanical Engineering, 2003
- Application of nonlinear viscoelastic models to describe ligament behaviorBiomechanics and Modeling in Mechanobiology, 2002
- Nonlinear Ligament ViscoelasticityAnnals of Biomedical Engineering, 2001
- An approach to quantification of biaxial tissue stress-strain dataJournal of Biomechanics, 1986
- A constitutive equation for collagen fibersJournal of Biomechanics, 1972
- Mechanical properties of the esophageal wallJournal of Clinical Investigation, 1971