Diameter change and pressure-red blood cell velocity relations in coronary microvessels during long diastoles in the canine left ventricle.
- 1 February 1990
- journal article
- research article
- Published by Wolters Kluwer Health in Circulation Research
- Vol. 66 (2) , 503-510
- https://doi.org/10.1161/01.res.66.2.503
Abstract
The objective of this study was to determine whether coronary vascular resistance remains constant during long diastoles and whether critical closure of arterial microvessels occurs at zero-flow pressure. For this purpose, we directly measured internal diameters and red blood cell velocities in arterial and venous coronary microvessels during long diastoles under maximal vasodilation. The epicardial coronary microcirculation was viewed in anesthetized, open-chest mongrel dogs through an intravital microscope equipped with a newly developed floating objective. Coronary microvascular diameters and red blood cell velocities were measured with high-speed cinematography. During maximal vasodilation (150 micrograms/kg body wt i.v. dilazep), long diastoles were induced by vagal nerve stimulation. Internal diameters of all small arteries and arterioles (n = 12) gradually declined with decreasing aortic pressure during long diastoles, and the reduction of the diameter was greatest when aortic pressure was less than 35 mm Hg. The mean internal diameter (88.8 +/- 52.2 microns) at minimal aortic pressure (19.2 +/- 6.4 mm Hg) was significantly less than that at an aortic pressure of 100 mm Hg (116.2 +/- 68.5 microns, p less than 0.01). The internal diameters of small veins and venules remained nearly constant during long diastoles. When red blood cell progression in coronary microvessels stopped at the nadir of aortic pressure, all arterial coronary microvessels remained open; that is, there was no evidence of "critical closure."(ABSTRACT TRUNCATED AT 250 WORDS)This publication has 20 references indexed in Scilit:
- A new microscope system for the continuous observation of the coronary microcirculation in the beating canine left ventricleMicrovascular Research, 1984
- Zero-Flow Pressures and Pressure-Flow Relationships during Single Long Diastoles in the Canine Coronary Bed before and during Maximum VasodilationJournal of Clinical Investigation, 1981
- Small coronary vessel pressure and diameter in an intact beating rabbit heart using fixed-position and free-motion techniques.Circulation Research, 1981
- Continuous measurement of coronary artery diameter in situAmerican Journal of Physiology-Heart and Circulatory Physiology, 1981
- Effects of preload on the transmural distribution of perfusion and pressure-flow relationships in the canine coronary vascular bed.Circulation Research, 1980
- Diastolic coronary artery pressure-flow relations in the dog.Circulation Research, 1978
- ENHANCEMENT OF CORONARY VASODILATING ACTION OF ADENOSINE BY DILAZEP AND DIPYRIDAMOLE IN THE DOGThe Japanese Journal of Pharmacology, 1974
- The distensibility of mesenteric venous microvesselsPflügers Archiv - European Journal of Physiology, 1971
- Occlusion of Lumina in Small Arterioles During VasoconstrictionCirculation Research, 1966
- Architecture of Small Arteries during VasoconstrictionCirculation Research, 1962