An Experimental Investigation of the Stability of Spiral Vortex Flow

Abstract
The hydrodynamic stability of the flow in an annular gap, formed by a stationary outer cylinder and a rotatable inner cylinder, through which an axial flow of air can be imposed, is studied experimentally. Two annulus radius ratios of 0.8 and 0.955 are considered, representing wide- and narrow-gap conditions, respectively. It is shown that, when a large, axial pressure gradient is superimposed on the tangential flow induced by the rotation of the inner cylinder, the characteristics of the flow at criticality change significantly from those at zero and low axial flows, the axial length and width of the resultant spiral vortex departing greatly from the known dimensions of a Taylor vortex cell at zero axial flow. Also, the drift velocity of the spiral vortex is found to vary with the axial flow. Axial Reynolds numbers, Rea, of up to 700 are considered.

This publication has 4 references indexed in Scilit: