Effects of the Novel NMDA Antagonists CP-98,113, CP-101,581 and CP-101,606 on Cognitive Function and Regional Cerebral Edema Following Experimental Brain Injury in the Rat

Abstract
The present study evaluated the effects of two novel N-methyl-D-aspartate (NMDA) receptor blockers and ifenprodil derivatives, CP-101,606 and CP-101,581, and their racemic mixture CP-98,113, on spatial memory and regional cerebral edema following experimental fluid-percussion (FP) brain injury in the rat (n = 66). Fifteen minutes after brain injury (2.5 atm), animals received either (1) CP-98,113 (5 mg/kg, i.p., n = 11), (2) CP-101,581 (5 mg/kg, i.p., n = 13), (3) CP-101,606 (6.5 mg/kg, i.p., n = 12), or (4) DMSO vehicle (equal volume, n = 12); followed by a continuous 24-h subcutaneous infusion of drug at a rate of 1.5 mg/kg/h by means of miniature osmotic (Alzet) pumps implanted subcutaneously. Control (uninjured) animals were subjected to identical anesthesia and surgery without injury and received DMSO vehicle (n = 8); CP-98,113 (5 mg/kg, i.p., n = 3); CP-101,581 (5 mg/kg, i.p., n = 3); or CP-101,606 (6.5 mg/kg, i.p., n = 3). FP brain injury produced a significant cognitive impairment assessed at 2 days postinjury using a well-characterized testing paradigm of visuospatial memory in the Morris Water Maze (MWM) (p < 0.001). Administration of either CP-98,113, CP-101,581, or CP-101,606 had no effect on sham (uninjured) animals, but significant attenuated spatial memory impairment assessed at 2 days postinjury (p = 0.004, p = 0.02, or p = 0.02, respectively). Administration of CP-89,113 but not CP-101,581 or CP-101,606 significantly reduced the extent of regional cerebral edema in the cortex adjacent to the site of injury (p < 0.05) and in the ipsilateral hippocampus (p < 0.05) and thalamus (p < 0.05). These results suggest that excitatory neurotransmission may play a pivotal role in the pathogenesis of memory dysfunction following traumatic brain injury (TBI) and that blockade of the NMDA receptor may significantly attenuate cognitive deficits associated with TBI.