Penalty Function Methods for the Numerical Solution of Nonlinear Obstacle Problems with Finite Elements
- 1 January 1981
- journal article
- research article
- Published by Wiley in ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik
- Vol. 61 (3-5) , 133-139
- https://doi.org/10.1002/zamm.19810610302
Abstract
A class of penalty function methods for the solution of nonlinear variational inequalities with obstacles <–Au, v–u> ⩽ 0 für alle v ⩾ ψ in the Sobolev space W1, p (ω) is studied. The (nonlinear) penalty equations are solved by finite element techniques; the order of convergence of this procedure which depends on the regularity of the solution as well as on the finite elements used is investigated.Keywords
This publication has 9 references indexed in Scilit:
- Méthodes d'ordre dans l'interprétation de certaines inéquations variationnelles et applicationsJournal of Functional Analysis, 1979
- Nichtlineare FunktionalanalysisPublished by Springer Nature ,1979
- Error estimates for the finite element solution of variational inequalitiesNumerische Mathematik, 1978
- Error estimates for the finite element solution of variational inequalitiesNumerische Mathematik, 1977
- One-sided approximation and variational inequalitiesBulletin of the American Mathematical Society, 1974
- Error estimates for the approximation of a class of variational inequalitiesMathematics of Computation, 1974
- On the regularity of the solution of a variational inequalityCommunications on Pure and Applied Mathematics, 1969
- Sur la régularité de la solution d'inéquations elliptiquesBulletin de la Société Mathématiques de France, 1968
- Variational inequalitiesCommunications on Pure and Applied Mathematics, 1967