The Fourier Self-Deconvolution of Raman Spectra

Abstract
Resolution enhancement by the use of Fourier self-deconvolution has been achieved with Raman spectra obtained from an instrument with an intensified diode array detector. A minimum signal-to-noise ratio of about 500:1 is acceptable and this is readily attainable, by spectral accumulation, in the case of relatively strong peaks such as those of carbon tetrachloride at 549 cm−1 and tetrahydrofuran at 915 cm−1. Resolution enhancement factors, K, of about 2.7 are then achieved. Weaker peaks, typified by the v (C-Cl) modes of polyvinyl chloride) require more extensive spectral accumulation, but a K value of 2.2 has proved feasible. The finite resolution imposed by the diode array detector is not a significant limitation. In order to obtain consistently good results it is necessary to optimize the signal-to-noise ratio, by choosing instrumental operating conditions best suited to specific samples.