Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function

Abstract
The empirical dielectric decay function γ(t)= exp –(t0)β may be transformed analytically to give the frequency dependent complex dielectric constant if β is chosen to be 0.50. The resulting dielectric constant and dielectric loss curves are non-symmetrical about the logarithm of the frequency of maximum loss, and are intermediate between the Cole-Cole and Davidson-Cole empirical relations. Using a short extrapolation procedure, good agreement is obtained between the empirical representation and the experimental curves for the α relaxation in polyethyl acrylate. It is suggested that the present representation would have a general application to the α relaxations in other polymers. The Hamon approximation, with a small applied correction, is valid for the present function with β= 0.50 in the range log(ωτ0) > –0.5, but cannot be used at lower frequencies.